پیش بینی خشکسالی با استفاده از مدل تلفیقی شبکه عصبی مصنوعی- موجک و مدل سری زمانیARIMA

Authors

  • حامد نوذری استادیار گروه مهندسی آب، دانشگاه بوعلی سینا، همدان، ایران.
  • صفر معروفی استاد گروه مهندسی آب، دانشگاه بوعلی سینا، همدان، ایران.
  • محبوبه یونسی دانشجوی دکتری، گروه مهندسی آب، دانشگاه بوعلی سینا، همدان، ایران.
  • نادیا شهرکی دانشجوی دکتری، گروه مهندسی آب، دانشگاه بوعلی سینا، همدان، ایران.
Abstract:

تبدیل موجک یکی از روش­های نوین و بسیار موثر در زمینه تحلیل سیگنال­ها و سری­های زمانی است. در این روش سیگنال شاخص بارش استاندارد (SPI) با استفاده از موجک مادر منتخب تجزیه شده، داده­های حاصل به­عنوان ورودی مدل شبکه عصبی مصنوعی در نظر گرفته شده و یک مدل تلفیقی برای پیش­بینی خشکسالی ارائه می­گردد. در این تحقیق، از شبکه­های عصبی مصنوعی پرسپترون چند لایه (MLP) و تابع پایه‌ای شعاعی ((RBF، سری زمانی ARIMA و هم­چنین شبکه­های عصبی مصنوعی- موجک پرسپترون چند لایه (WA-MLP) و تابع پایه‌ای شعاعی (WA-RBF) برای پیش­بینی استفاده شده است. در این خصوص، از داده‌های بارندگی ایستگاه بیدستان با دوره آماری 44 ساله در حوضه آبریز شور استفاده شد. وضعیت رطوبتی با استفاده از شاخص بارندگی استاندارد شده (SPI) در دوره‌ سه ماهه محاسبه گردید. برای تخمین مقدار SPI در هر بازه زمانی، از مقادیر مربوطه در زمان‌های ماقبل، استفاده شد. نتایج نشان داد مدل WA-MLP با دقت بالاتری (87/0=R2) مقادیر SPI و وضعیت خشکسالی کوتاه مدت را پیش‌بینی می‌کند.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مقایسه قدرت مدل های شبکه عصبی مصنوعی و شبکه عصبی پویا در پیش بینی نرخ ارز: کاربردی از تبدیل موجک

این مطالعه تلاشی است در جهت به­کارگیری ترکیب مدل شبکه­ی عصبی پویا و تجزیه­ی موجک جهت میسر نمودن امکان انتخاب یک الگوی بهینه جهت پیش­بینی متغیر مذکور می­باشد. جهت تحقق این مهم، از داده­های سری­زمانی ماهانه­ی نرخ ارز طی بازه­ی زمانی فروردین 1377 الی آذر 1391، که مشتمل بر 177 مشاهده بوده که از این بین، تعداد 150 مشاهده جهت مدل­سازی­ها استفاده شده و تعداد 27 مشاهده نیز جهت شبیه­سازی و یا به بیان دی...

full text

مدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی

شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...

full text

پیش بینی آبدهی متوسط ماهانه با استفاده از مدل تلفیقی شبکه عصبی مصنوعی و تبدیلات موجک (مطالعه موردی: رودخانه کر- ایستگاه پل خان)

آگاهی از اطلاعات دبی جریان در رودخانه ها برای مدیریت منابع آب، پیش بینی سیل، طراحی مهندسی و مدیریت زیست محیطی ضروری می باشد. مدل های ارائه شده همچون بارش-رواناب و سری های زمانی به منظور پیش بینی میزان آبدهی رودخانه ها به دلیل عدم دقت و پیچیدگی عوامل مؤثر در آبدهی در بسیاری از موارد با مقادیر مشاهده شده تطابق ندارد. موجک یکی از روشهایی است که در سالهای اخیر در زمینه هیدرولوژی مورد توجه قرار گرفت...

full text

مدل سازی و پیش بینی ضایعات نان با استفاده از مدل های سری زمانی و شبکه های عصبی مصنوعی

دراین مطالعه به منظور بررسی عوامل مؤثر بر ضایعات نان و تعیین روابط کوتاه مدت، بلندمدت و ضریب تصحیح خطا بین ضایعات نان و متغیرهای مستقل مؤثر برآن طی سال های 1385-1357 و پیش بینی ضایعات نان از الگوی سری زمانی چند متغیره ardl استفاده شده است. بر اساس الگوی ardl ضایعات نان در بلندمدت تابعی مستقیم از تولید ناخالص ملی و رشد شهرنشینی می باشد و قیمت نان و ضریب جینی بر ضایعات نان اثر معکوس دارند. در کوت...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 41  issue 2

pages  167- 181

publication date 2018-06-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023